Calculation Policy

Key Stage 1 - Addition

Y1

Through practical activities and meaningful contexts using concrete objects, pictorial representations and informal written methods:

- Recall number bonds to 20 and within 20.

- Derive related facts to 20
$\square=5+4$
$5+4=\square$
$\square+4=9$
$\square+\square=9$
- Add one digit and two digit numbers to 20, including zero, including using a number line

- Solve one step problems involving addition including missing numbers
$20=15+\square$
- Read, write and interpret mathematical statement involving addition (+) and equals ($=$).
$7+5=12$

- See also "Fractions" on page 14

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Fluently recall of bonds to 20 and within 20, recognising their associated additive relationships
$7+3=10$ therefore $17+3=20$
$14+3=17$ therefore $3+14=17,17-14=3$ and $17-3=14$
- Derive and use related facts up to 100.
$\square=40+55$
$55+40=\square$
$\square+40=95$
$\square+\square=95$
- Add 2 two digit numbers using efficient strategies, explaining their method verbally, using concrete objects, pictorial representations and mentally

- Show that addition of two numbers can be done in any order (commutative). $12+5=17 \quad 5+12=5$
- Recognise and use the inverse relationship between addition and subtraction $25+10=35 \quad 10+25=35 \quad 35-25=10 \quad 35-10=25$
- Progressing to partitioned columnar method (in preparation for year 3).

- See also "Fractions" on page 14

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Mentally add pairs of 2-digit numbers, 3-digit numbers and ones, 3 digit numbers and tens and three digit numbers and hundreds
- Add numbers with up to 4 digits using formal written methods

$$
3842+1483=5325
$$

	3	8	4	2
	1	4	8	3
5	3	2	5	
1	1			

- Use inverses to check answers to calculations and estimate to check answers
$1627+738=2365$
$2365-738=1627$

1	6	2	7
+	7	3	8
2	3	6	5
1		1	

- Solve two step addition problems by selecting the correct method

There are 45 counters in a box and 98 are added. The next day, a further 138 are added. How many are there altogether?

- Add numbers mentally including 3-digit numbers and ones
- Add numbers mentally including 3-digit numbers and tens
- Add numbers mentally including 3-digit numbers and hundreds
- See also "Fractions" on page 15

Key Stage 2 - Addition

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Solve multi-step addition problems in context deciding which operation and method to use and why

- Use rounding to check answers to calculations,
- Add mentally using increasingly large numbers
- Add numbers with more than 4 digits using formal methods

$$
\begin{aligned}
& 45673+93812=139485 \\
&
\end{aligned}
$$

- See also "Fractions" on page 16

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Use estimation to check answers to calculations
- Solve multi-step problems involving any operation

- Work out mixed calculations by following the correct order of operations.

B	Brackets
I	Indices
D	Division
M	Multiplication
A	Addition
S	Subtraction

- Calculate mentally including with mixed operations and large numbers
- See also "Fractions" on page 16

Y1

Through practical activities and meaningful contexts using concrete objects pictorial representations and informal written methods:

- Subtract one and two digit numbers within 20

5

Derive related facts up to 20.
$5-2=\square$
$\square=5-2$
$5-\square=3$
$3=\square-2$
$\square-2=3$
$3=5-\square$
$\square-\square=3$
3 = \square -

- Subtract one digit and two digit numbers to 20, including zero, including using a number line
$14-6=8$

- Solve one step problems involving subtraction including missing numbers $15=20-$
- Read, write and interpret mathematical statement involving subtraction $(-)$ and equals (=)
$12-5=7$

- See also "Fractions" on page 14

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Fluent recall of bonds to 20 and within 20.
- Derive and use related facts up to 100
e.g. $10-7=3$ so $100-70=30$
- Counting back by partitioning second number. Subtract the ones first to be in line with columnar subtraction.
E.g. 46-18

46-8-10

- Find the difference by counting up (only when the difference is small). $23-18=5$

- Recognise and use the inverse relationship between addition and subtraction
- Show that subtraction is not commutative (done in any order)
$14-6=8$ so $14-8=6$
- Progressing to the partitioned columnar method in preparation for year 3 $48-12=36$

40	8
-	10
30	2

- See also "Fractions" on page 14

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Sotve missing number problems for subtraction
- Solve word problems for subtraction
- Subtract numbers with up to 3 -digit numbers, including exchanging

TO	HTO	T O
47	864	$45^{1} 1$
-23		
24	$\underline{-621}$	$\underline{-36}$
	$\underline{243}$	$\underline{15}$

- Subtract numbers mentally including 3-digit numbers and ones
- Subtract numbers mentally including 3-digit numbers and tens
- Subtract numbers mentally including 3-digit numbers and hundreds
- See also "Fractions" on page 15

Y4

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Mentally subtract pairs of 2-digit numbers,3-digit numbers and ones, 3 digit numbers and tens and three digit numbers and hundreds
- Subtract numbers with up to 4 digits using formal written methods, including the column method

$\begin{gathered} \text { HTO } \\ 34437 \end{gathered}$	$\begin{aligned} & \mathrm{H} \quad \mathrm{~T} O \\ & 3 / 4^{12} z^{\prime 2} 12 \end{aligned}$	$\begin{array}{ccc} \mathrm{H} & \mathrm{~T} & 0 \\ { }^{5} \phi \end{array}{ }^{91} \varnothing \quad 14$	$\begin{aligned} & \text { Th H T O O } \\ & 8^{3} / 4^{11} \chi^{1} 6 \end{aligned}$
-182	$\begin{array}{r}-187 \\ \hline 245\end{array}$	647 $-\quad 34$	2177 -2124
255	245	$\begin{array}{llll}2 & 5 & 7\end{array}$	6249

- Use inverses to check answers to calculations and estimate to check answers

```
2366-738=1627
1627+738=2366
```

- Solve two step subtraction problems by selecting the correct method

- See also "Fractions" on page 15

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Solve multi-step subtraction problems in context deciding which operation and method to use and why

- Use rounding to check answers to calculations
- Subtract mentally using increasingly large numbers
- Subtract numbers with more than 4 digits using formal methods

$$
\begin{aligned}
& 73840-19383=54457 \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 6 & 7^{1} & 3 & 8 & 4 & 1 \\
- & 1 & 9 & 3 & 8 & 3 \\
\hline & 5 & 4 & 4 & 5 & 7 \\
\hline
\end{array}
\end{aligned}
$$

- See also "Fractions" on page 16

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Use estimation to check answers to calculations
- Solve multi-step problems involving any operation

Sarah bought 166 apples on Tuesday and a further 273 apples on Wednesday. She then sold 295 apples. How many apples did she have left?

$$
166+273=439
$$

1

- Work out mixed calculations by following the correct order of operations

B	Brackets
I	Indices
D	Division
M	Multiplication
A	Addition
S	Subtraction

- Calculate mentally including with mixed operations and large numbers
- See also "Fractions" on page 16

Y1
Through practical activities and meaningful contexts using concrete objects,

- Show multiplication using pictures including number lines,

- Make connections between arrays, number patterns and counting in 2's, 5's to 50 and 10's to 100
- Show multiplication using arrays

$$
\begin{gathered}
4 \times 5 \\
5+5+5+5
\end{gathered}
$$

- Doubles single digit numbers

- Multiply using objects (by grouping small amounts)
- Solve simple multiplication problems.

There are 2 sweets in one bag. How many sweets are there in 5 bags?

- See also "Fractions" on page 14

Y2

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Double numbers (by partitioning and recombining) $17+17$.

- Understand multiplication as repeated addition/groups/lots.
- Read arrays.

$$
\begin{array}{ll}
\text { arrays. } & 2 \times 4 \\
\text { (i): } & 2+2+2+2
\end{array}
$$

- Repeated addition on a number line.

- Know the multiplication tables for 2,5 and 10.
- Calculate mathematical statements within the multiplication tables using the multiplication (x) and equals (=) signs.
- Show that the multiplication of two numbers can be done in any order (commutative).
- See also "Fractions" on page 14

Y3
Through practical activities and meaningful contexts using concrete objects,
pictorial representations and formal written methods:
- Write and calculate mathematical statements for multiplication.
Statements to include the multiplication tables that they know and 2 digit
numbers $x 1$ digit numbers. Pupils use mental methods and progress to
formal written methods (expanded column method)
T0
14 $\times \frac{5}{2} 0$ $+\frac{5}{70}$ 7(5×10)

- Solving missing number problems using multiplication
$5 \times \square=55$
- Solve word problems using multiplication

Fifteen friends each buy four apples. How many apples are there altogether?

- Use mental strategies to multiply a 2-digit number by a 1-digit number
- Recall and use multiplication facts for the 2,4 and 8 times tables
- . See also "Fractions" on page 15

Y4

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Mentally multiply together 3 numbers using place value and known derived facts
- Recall multiplication tables and facts up to 12×12
(Including multiplying by 0 and 1).
- Continue using grid method and expanded method as appropriate, progressing to short multiplication to multiply 2-digit numbers by a 1 digit number, solve problems involving multiplying and multiply 3 numbers together (see year 3)

- Use short multiplication to multiply 2-digit numbers by a 1-digit number, sotve problems involving multiplying and multiply 3 numbers together.

No carrying	Extra digit	Carrying	Zeros	Ext.
T O	H T O	H T O	H T O	H T O
32	51	38	202	$\square 5 \square$
$\times \frac{3}{\underline{96}}$	$\times \frac{2}{102}$	$\times \frac{7}{266}$	$x \frac{4}{808}$	$x \frac{4}{612}$

- See also "Fractions" on page 15

Y5
Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Multiply numbers mentally using known facts
- Recognise and use prime, square and cube numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- Multiply whote numbers and those involving decimals by 10, 100 and 1000
- Recall and use multiplication tables up to 12×12 (Including multiplying by 0 and 1).
- Continue to practise short multiplication to multiply whole numbers, multiply a number up to 4 digits by a 1-digit number and solve problems involving multiplication (see year 4)
- Introduce long multiplication to multiply whote numbers, multiply a number up to 4 digits by a 1-digit number and solve problems involving multiplication

	1	8
	1	3
x	5	4
1	8	0
2	3	4

- Identify multiples and factors including finding all factor pairs
- See also "Fractions" on page 16

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Recall and use multiplication tables up to 12×12
(Including multiplying by 0 and 1).
- Use estimation to check answers to calculations
- Work out mixed calculations by following the correct order of operations
- Calculate mentally including with mixed operations and large numbers
- Continue to practise both short and long multiplication to solve multi-step problems involving any operation and multiply up to 4 digits by 2 digits (see year 5)

- Multiply decimals using the grid method and progressing on to short multiplication
- See also "Fractions" on page 16

Key Stage 1 - Division

Y1
Through practical activities and meaningful contexts using concrete objects,

- Solve simple division problems by explaining division as sharing equally. Share a bag of 15 sweets between 5 children - one for you, one for you, one for you, one for you, one for me.

- Divide by using objects - group objects into small amounts

12 shared between 3 is 4

- Introduce halving even numbers up to 20 .

Half of 4

- See also "Fractions" on page 14

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Recall and use division facts for 2,5 and 10 times tables.
- Continue to use division as sharing.

15 children get into teams of 5 to play a game. How many teams are there?
 How many groups of 5 in 15 ? How many 5's have been counted?

How many 2's in 10?

- Understand ' $\div 2$ ' as 'half of'.
- Understand that division is not commutative.
- Recognise and explain the relationship between x and \div
$4 \times 2=8$ so $8 \div 2=4$
- Record using division (\div) and equals (=) signs.
- Use number lines to answer questions such as $20 \div 2=$


```
11111111111111111111।1।
```

- See also "Fractions" on page 14

Y3 pictorial representations and formal written methods:

- Write and calculate mathematical statements for division using the tables they know.
- Use short division, to solve missing number problems and word problems with exact answers.

- Recall and use division facts for 3,4, and 8 times tables.
- See also "Fractions" on page 15

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Recall and use all division facts for all tables up to 12 (Including dividing by 1)
- Use place value, known and derived facts to divide mentally
- Continue with short division method involving carrying, with exact answers to solve problems (see year 3)

$4 \longdiv { 1 8 }$

- Progress to short division with remainders to solve problems.

- See also "Fractions" on page 15

Y6

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Recall and use all division facts for all tables up to 12 (Including dividing by 1)
- Divide numbers mentally using known facts
- Divide whole numbers and those involving decimals by 10, 100 and 1000
- Consolidate the use of short division to divide numbers with up to 4 digits by a 1 or 2 digit number and solve problems involving division (see year 4)

- Use long division to divide numbers with up to 4 digits by a 1 or 2 digit number and solve problems involving division
Aswer: 28 remainder 12

$$
\begin{aligned}
& 432 \div 15 \text { becomes } \\
& \\
& \frac{12}{15}=\frac{4}{5} \\
& \text { Answer: } 28 \frac{4}{5}
\end{aligned}
$$

N.B: The above examples are taken from the National Curriculum for Mathematics appendix.

- See also "Fractions" on page 16

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Recall and use all division facts for all tables up to 12 (Including dividing by 1)
- Continue to practise both short and long division to solve multi-step problems involving any operation and divide up to 4 digits by 2 digits (see year 5)
- Children should be able to interpret remainders as whole number remainders, fractions or by rounding, as appropriate for the context.

$$
\begin{aligned}
& 98 \div 7 \text { becomes } \\
& \begin{array}{cc}
1 \quad 4 \\
7 & 9^{2} 8
\end{array}
\end{aligned}
$$

- Answer: 14

$$
\begin{aligned}
& 432 \div 5 \text { becomes } \\
& \begin{array}{c}
8 \\
5 \\
\mathbf{5} \mathbf{3}^{3} \mathbf{6}
\end{array}
\end{aligned}
$$

Answer: 86 remainder 2
$496 \div 11$ becomes

- Use estimation to check answers to calculations
- Work out mixed calculations by following the correct order of operations
- Calculate mentally including with mixed operations and large numbers
N.B: The above examples are taken from the National Curriculum for Mathematics appendix.
- See also "Fractions" on page 16

Key Stage 1 - Fractions

- Find and name a half of a quantity, shape and object

- Find and name a quarter of a quantity, shape and object

- Write simple fractions and recognise the equivalence of $2 / 4$ and 1/2

Key Stage 2 - Fractions

Y6

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Write percentages as a fraction (out of 100 and simplify)

- Solve number problems involving fractions
- Compare and order fractions whose denominators are all multiples of the same number

- Read and write decimal numbers as fractions
- Multiply proper fractions and mixed numbers by whote numbers supported by diagrams and materials.

Count the number of sixths to work out

- Add and subtract fractions with the same denominator and related fractions (see year 3)
- Recognise mixed numbers and improper fractions and convert from one form to another

Through practical activities and meaningful contexts using concrete objects, pictorial representations and formal written methods:

- Divide proper fractions by a whole number
- Multiply simple pairs of proper fractions, writing the answer in its simplest form

- Add and subtract fractions with different denominators and mixed numbers
- Associate fractions with division to calculate an equivalent fraction
- Compare and order fractions including fractions greater than 1

$$
\text { Use bar models to compare } \frac{7}{6} \text { and } \frac{5}{3} \text {. }
$$

- Use common factors to simplify fractions and use common multiples to express fractions in the same denominator

- Recall and use equivalences between simple fractions, decimals and percentages

